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• Information in biocollections can be used to understand pests, biodiversity, 
climate change, natural disasters, diseases, and other environmental issues.

• There are about 1 Billion specimens in Biocollections 
in the United States and about 3 Billion in the whole 
World (Estimated).

• NSF’s Advancing Digitization of Biodiversity 
Collections (ADBC) program.

Digitization of Biocollections

Photo by Chip Clark. Bird Collection, Dept. of 

Vertebrate Zoology, Smithsonian Institution’s 
National Museum of Natural History. In the 
foreground: Roxie Laybourne, feather 
identification expert.

Photo by Chip Clark. U.S. National Herbarium at the 
Smithsonian Institution’s National Museum of Natural 
History. Featured researchers: Dr. James Norris (right, 
front), research assistant Bob Sims (left, front), and 
associate researcher, Katie Norris (left, back). 
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Digitization Process
Digitization: 

1. Photograph of the specimen and its correspondent 
labels.

2. Transcription of the metadata in a database 
(commonly performed by volunteers)

• Global Problem: How can we accelerate (make 
more efficient) the digitization process? 

• General Answer: Partial or total automation of 
the transcription process.



The Challenge of Automated Information Extraction
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Automated IE: Optical Character Recognition + Natural Language Processing
- Biocollections’ images are problematic for OCR engines
- OCR result is not perfect. Handwritten text is especially problematic.

Specific Problem: Can we generate trust 
in the text extracted by the OCR engine?



Proposed Solution

• We propose a SELFIE (Self-aware IE) workflow model for the transcription 
of biocollections’ labels (https://doi.org/10.1109/eScience.2017.19)

• The challenge in SELFIE workflows is the confidence estimation method.

• Inspired by crowdsourcing, we use redundancy: an Ensemble of OCR 
engines.
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https://doi.org/10.1109/eScience.2017.19


Ensemble of OCR Engines – Lines Extraction
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• OCR steps: binarization, segmentation, and recognition

• To compare the results provided by OCRopus, Tesseract, and the Google 
Cloud OCR (GC-OCR), we need a common text unit: Lines

• OCRopus and Tesseract segmentation introduce many errors.

• The GC-OCR character information was used to create a new 
segmentation algorithm 



• OCRopus, Tesseract, and the GC-OCR were run on each line.

• The per-character probability (confidence) was collected.
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Ensemble of OCR Engines - OCR

OCRopus: Aushra1ian Museum
Tesseract: Australian Museum
GC-OCR: Australian Museum

OCRopus: c Rofhl
Tesseract: C RoHn)
GC-OCR: C Roth)

c 0.78
0.94

R 0.89
. . .  



• If three OCR engines agree, the text is accepted as correct

• If two OCR engines agree and their average per-character probability is 
greater than 0.8, the text is accepted as correct.
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Ensemble of OCR Engines – Majority Voting

OCRopus: Aushra1ian Museum
Tesseract: Australian Museum
GC-OCR: Australian Museum

OCRopus: c Rofhl
Tesseract: C RoHn)
GC-OCR: C Roth)



• Using the text in the accepted lines, two support structures are built:
• Unigram (1-gram) model or word count. The words that appear less than 3 times 

are discarded.

• The per-character probability average and standard deviation, per OCR engine 
(OCRopus, Tesseract, and GC-OCR)
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Ensemble of OCR Engines – Support Structures

1-gram or word count:
GPS, 10
Baldy, 3
Museum, 34
…

Per-character statistics:
character, mean, standard deviation
a, 0.78, 0.0456
b, 0.84, 0.0899
1, 0.92, 0.0919
…



• Lines are scanned and those characters which belong to the words in the 
1-grams are considered correct (confidence = 1).

• For the characters that do not belong to any n-gram:
• Per line, the characters of the text extracted by the three OCR engines are aligned.

• If at least OCR 2 engines extract the same character, it is considered correct.

• If consensus is not reached, the character extracted by the GC-OCR is selected.

• Lines with all characters with 
confidence = 1 are accepted
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Ensemble of OCR Engines – Per-character Eval.
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Ensemble of OCR Engines - Crowdsourcing
• There are two common crowdsourcing approaches:

• WeDigBio: Three transcribers + Consensus

• DigiVol: One transcriber + One reviewer

• Volunteers of the Australian Museum were asked to transcribe lines from 
the remaining (rejected) lines.
• Independent transcriptions were made to cover both crowdsourcing approaches.

• Ensemble’s lines were considered 
the first human transcription



Datasets and Segmented Lines

Dataset # Images # Lines

A-OCR Insects 100 1,132

A-OCR Herbs 100 3,192

A-OCR Lichens 200 2,618

DV-Roaches 1,117 10,002

DV-Flies 1,054 7,821

DV-Bees 395 3,053

Total 2,966 Images 27,818 Lines
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• Six collections were utilized in the experiments:
• A-OCR: Augmenting-OCR Working Group (iDigBio), https://github.com/idigbio-

aocr/label-data

• DV: DigiVol – Australian Museum, https://digivol.ala.org.au/

https://github.com/idigbio-aocr/label-data
https://digivol.ala.org.au/


Results – Out-of-the-box Accuracy
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OCR Engine’s Own Segmentation GC-OCR’s Segmentation

• Compared to the ground truth transcriptions of the entire text in the images.
• The segmentation algorithm improved the OCRopus’ and Tesseract’s output 

quality.



Results – Ensemble of OCRs

Images Lines Accepted To Crowd % Accepted

ao_insects 100 1,132 711 421 62.81%

ao_herbs 100 3,192 1,657 1,535 51.91%

ao_lichens 200 2,618 1,639 979 62.61%

dv_roaches 1,117 10,002 5,831 4,171 58.30%

dv_flies 1,054 7,821 4,372 3,449 55.90%

dv_bees 395 3,053 1,800 1,253 58.96%

15

• 57.55% (16,010) of the 27,818 lines were accepted using the ensemble-of-OCRs 
algorithm.

• Quality of the accepted data:
• Volunteers were asked to edit 600 lines.
• Of the 10,081 characters in the 600 lines, volunteers made changes, 

insertions, or deletions in only 10 characters. This means that the accepted 
lines have a CER of 0.001 and an accuracy of 99.9%. 



Results - Total Savings

Tasks 
required

Ensemble 
savings

Hybrid crowd.  
savings

Total 
savings

Dynamic Human-
Machine Consensus

3 x nL 57.55% 15.80% 73.35%

Hybrid Transcriber 
/Reviewer

2 x nL 57.55% 21.23% 78.78%
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Related Work

• Crowdsourcing platforms: 
• Symbiota (flora/fauna) 
• Zooniverse

• Notes from Nature, for biodiversity metadata transcription.

• IE Applications:    Augment but not replace humans
• SALIX 
• APIARY (workflow & tools) 

• Parsers
• LBCC, SALIX (Frequency tables!) – Included in Symbiota.

• NY Botanical Garden, Drinkwater et. al. 
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Conclusions
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• This research proposed the use of a SELFIE workflow for the 
transcription of the biocollections’ images, using an Ensemble of OCR 
engines to generate confidence and hybrid crowdsourcing to save tasks.

• About 58% of the text could be validated using the Ensemble of OCRs. 
The text extracted presented an accuracy of 99.9%.

• Two common crowdsourcing approaches for the generation of the final 
value were tested. The use of the Ensemble’s transcription in these 
approaches save, in average, 44% of the crowdsourcing tasks.

• In total, the text extraction approach reduced, in average, 76% the 
number of crowdsourcing tasks.

• The code developed and utilized during the research is available at 
https://github.com/acislab/HuMaIN_Text_Extraction

https://github.com/acislab/HuMaIN_Text_Extraction


Thank you
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Questions?
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the views of the National Science Foundation.


